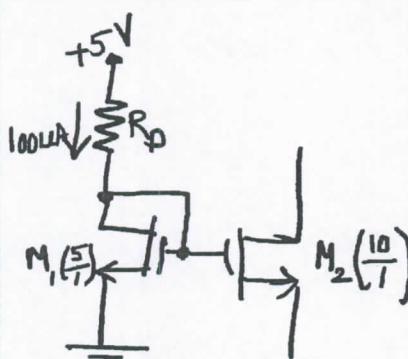


Roll No.

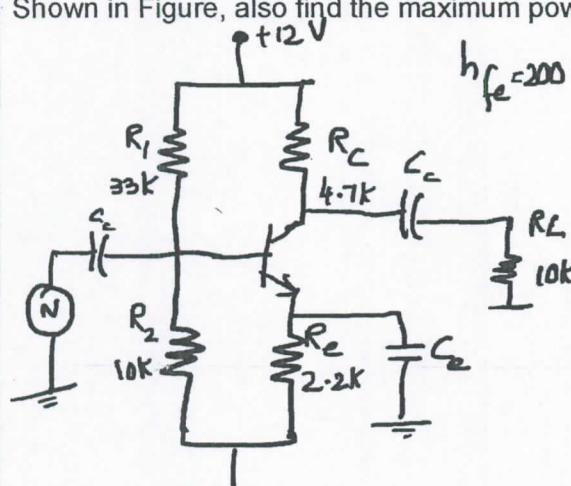
ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, MAY/JUN 2024

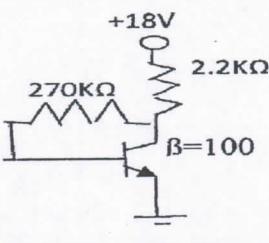
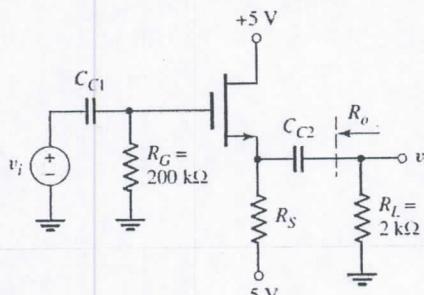
ELECTRONICS AND COMMUNICATION ENGINEERING
Semester III
EC7301 & Electronic Circuits I


(Regulation 2015)

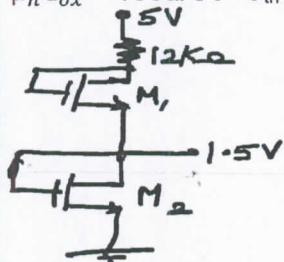
Time: 3hrs


Max.Marks: 100

PART- A (10 x 2 = 20 Marks)
(Answer all Questions)



Q. No	Questions	Marks
1	If the coordinates of the operating point of a CE amplifier using base resistor method of biasing are $V_{CE}=7V$ and $I_C=1.5mA$, determine the value of R_C and R_B	2
2	The circuit shown in figure has parameters $R_E = 0.2 \text{ k}\Omega$, $R_C = 5 \text{ k}\Omega$, $R_1 = 15 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$ and $R_L = 10 \text{ k}\Omega$. The transistor parameters are $\beta = 100$, $V_{EB(on)} = 0.7 \text{ V}$, and $V_A = \infty$. The circuit is biased with $I_{CQ}=1.6\text{mA}$ and $V_{CEQ}=5.11\text{V}$. Draw ac load line characteristic and mention the slope of ac load line on the load line characteristic.	2
3	A Common base amplifier has maximum gain of 125 and R_{in} is approximately equal to 26Ω . Find the value of R_C [$R_L=\infty$ and $R_S=0$]	2
4	Define CMRR of differential amplifier	2
5	Find the aspect ratio of NMOS inverter shown in figure.	2
6	<p>Write the expression of voltage gain of circuit shown</p>	2

7	For an amplifier, mid band gain is 100 & lower cutoff frequency is 20KHz. Find the gain of an amplifier at frequency 20Hz.	2
8	The parameters of a transistor are: $\beta_0 = 120$, $f_T = 500\text{MHz}$, $r_{\pi} = 5\text{k}\Omega$ and $C_{\mu} = 0.2\text{pF}$. Determine C_{π} and f_B	2
9	Find the current I_{D2} in the circuit shown.	2
10	Draw a PMOS current source and its equivalent circuit and derive for its output resistance.	2


PART- B (5 x 13 = 65 Marks)

Q. No	Questions	Marks
11 (a) (i)	<p>Locate the operating point by drawing the dc and ac load lines of the circuit shown in Figure, also find the maximum power delivered to the load R_L.</p>	7
(ii)	<p>Calculate the values of R_1 and R_C in the voltage divider bias circuit so that Q-point is at $V_{CE}=6\text{V}$ and $I_C=2\text{mA}$. Assume the transistor parameters are $\alpha=0.985$, $I_{CBO}=4\mu\text{A}$ and $V_{BE}=0.2\text{V}$.</p>	6

(OR)

11 (b) (i)	<p>Determine the change in collector current produced in each bias referred in Figure . When the circuit temperature raised from 25°C to 105°C and I_{CBO}</p> <p>$=15\text{nA} @ 25^\circ\text{C}$</p>	7
(ii)	<p>Determine the transition point and minimum output voltage of an NMOS inverter with resistor load. Given $V_{DD} = 5\text{V}$, $R_D = 20\text{k}$, $V_{TN} = 0.8\text{ V}$ and $K_n = 0.2\text{ mA/V}^2$</p>	6
12 (a)	<p>A CE amplifier uses load resistor $R_C = 2.5\text{K}\Omega$ in the collector circuit and is given by the voltage source V_s of internal resistance 600Ω. The h parameters of the transistor are $h_{ie} = 1300\Omega$, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 55$ and $h_{oe} = 22\mu\text{mhos}$. Neglecting the biasing resistor across the V_{CC} supply, compute the current gain A_I, input resistance R_i, Voltage Gain A_v, output Resistance R_o and output terminal resistance R_{oT} for the following values of emitter resistor R_E inserted in the emitter circuit (i) 200Ω (ii) 400Ω (iii) 1000Ω. Use the approximate model for the transistor if permissible</p>	13
(OR)		
12 (b) (i)	<p>A Germanium transistor CE amplifier biased by feedback resistor method, $V_{CC} = 20\text{V}$, $V_{BE} = 0.2\text{V}$, $\beta = 80$ and the operating point is chosen such that $V_{CE} = 10.4\text{V}$ and $I_C = 9.9\text{mA}$. Determine R_B and R_C</p>	7
(ii)	<p>For a Common Base amplifier driven by a voltage source of internal resistance $R_s = 600\Omega$, the load impedance is a resistor $R_L = 1200\Omega$. The h parameters are $h_{ib} = 22\Omega$, $h_{rb} = 4 \times 10^{-4}$, $h_{fb} = -0.98$ and $h_{ob} = 0.25\mu\text{A/V}$. Compute the current gain A_I, the input impedance R_i, Voltage gain A_v, overall voltage gain A_{vs}, Overall Current gain A_{is}, output impedance Z_o and power gain A_p using exact and approximate analysis</p>	6
13 (a)	<p>Draw a common source amplifier with degenerative resistance (with feedback) and its equivalent circuit. Derive for its voltage gain, current gain, input resistance and output resistance.</p>	13
(OR)		
13 (b) (i)	<p>For the source-follower circuit in Figure , the transistor parameters are: $V_{TN} = 0.8\text{V}$, $K_n = 1\text{ mA/V}^2$, and $\lambda = 0$. Design the circuit such that $R_o \leq 200\Omega$. Determine the resulting small-signal voltage gain.</p>	7
(ii)	<p>The small signal parameter of the NMOS transistor in the ac equivalent common gate circuit shown in figure are $g_m = 5\text{mA/V}$ and $r_o = \infty$. Determine the voltage gain and the input resistance.</p>	6

PART- C (1 x 15 = 15 Marks)
 (Q.No. 16 is Compulsory)

Q. No	Questions	Marks
16 (i)	Determine the differential and common mode gains of a differential amplifier: $V^+ = 10 \text{ V}$, $V^- = -10 \text{ V}$, $I_o = 0.8 \text{ mA}$, $R_C = 12 \text{ k}\Omega$, $\beta = 150$, $R_O = 22 \text{ k}\Omega$, $V_A = \infty$, source resistance $R_S = 0$. Use one sided output at V_{C1}	8
(ii)	The Darlington amplifier has the following parameters, $R_S = 3 \text{ k}\Omega$, $R_E = 3 \text{ k}\Omega$, $h_{ie} = 1.1 \text{ K}\Omega$, $h_{fe} = 50$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 25 \mu\text{mho}$. Then calculate A_I , R_I , A_V and R_O	7

